

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024 e-ISSN: 2656-4882 p-ISSN: 2656-5935

DOI: 10.51519/journalisi.v6i4.1000 Published By DRPM-UBD

3207

	
 This work is licensed under a Creative Commons Attribution 4.0 International License.	

Rule-Based Transliteration of Ulu Kaganga Script using
Character Mapping

Ilman Zuhri Yadi1, Yesi Novaria Kunang2,*, Tia Permata Sari3 , Mahmud4,

Nuzulur Ramadhona5

1,2,3,4 Intelligent Systems Research Group, Faculty of Sciences Technology,

Universitas Bina Darma, Palembang, Indonesia
5Community of Ulu Script Enthusiasts, Palembang, Indonesia,

Email: 1ilmanzuhriyadi@binadarma.ac.id, 2yesinovariakunang@binadarma.ac.id,
3tiapermatasari06@gmail.com, 4mahmud120398@gmail.com, 5nuzUlur.romadhona@gmail.com

Abstract

Ulu Kaganga script is a historical writing tradition that developed in the southern region of
Sumatra. With the widespread use of Latin script, the Ulu Kaganga script has become rare,
and very few people can read and write in this script. To preserve the Ulu script, a tool is
needed to assist in transliterating Latin text into the Ulu script. This research aims to
preserve the Ulu script with the help of technology. In this study, a mobile and web-based
application has been developed to transliterate the Ulu Kaganga script from Latin text. The
technique used for this script conversion is rule-based, which is employed to break words
into syllables and map those syllables into Ulu script characters. Through the rule-based
technique and character mapping, adding Indonesian syllables and writing Ulu Kaganga
script characters, consisting of 1139 primary characters, becomes easy. This application has
been repeatedly tested to improve the mapping of Ulu script characters. The results of
testing the application to transliterate 1746 words from Latin script were successful in
transliterating. The tests conducted show that the approach used is very effective, with a
transliteration accuracy from Latin to Ulu script of 99.98% The testing results show that
the application can transcribe text accurately and conveniently, allowing non-expert users
to write in Ulu script characters.

Keywords: Character Mapping, Kaganga Ulu Script, Rule-based, Syllabification,
Transliteration

1. INTRODUCTION

Indonesia is an archipelagic country with a diverse cultural heritage. One of these
cultural treasures is scripts or native writings found in various regions. Among the
various Nusantara scripts, Aksara Ulu is one type of ancient writing tradition that
communities in southern Sumatra. This script emerged in the 12th century A.D.
and experienced rapid growth during the 17th to 19th centuries A.D. [1]. The
development of the Ulu script in the Uluan region or along the riversides of South
Sumatra encompasses areas such as Lahat, Pagaralam, Musi Rawas, Ogan

https://doi.org/10.51519/journalisi.v6i2.759
https://doi.org/10.51519/journalisi.v6i4.1000
http://creativecommons.org/licenses/by/4.0/

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

3208 | Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping

Komering Ulu, and also the Ilir region, including Palembang and its surroundings
[1], [2], [3]. There are various variants of the Ulu script, which are derived from the
Kaganga script, including the Ulu Pasemah, Ulu Serawai, Ulu Lembak, Ulu
Palembang, Ulu Rejang, Ulu Lampung, and Ulu Komering scripts [4], [5]. In the
past, these scripts were commonly used for daily activities such as storytelling,
writing poems, and recording customary laws [2]. The limited ability to read and
write the Ulu script has led to limitations in conveying information from existing
Ulu script artefacts or manuscripts.

The Ulu Kaganga script of South Sumatra is only understood by a handful of
people, typically philology experts. The lack of younger generations who recognize
and can read the Ulu Kaganga script is a serious concern. This is evident from the
many historical documents written in Ulu Kaganga that are now difficult to
comprehend and increasingly rare. The dominance of the Latin script in
communication has led to the neglect of the Ulu Kaganga script, potentially
resulting in the loss of this valuable cultural heritage. In this context, the tools
developed in this research to assist with transliteration play a very important role.
The tools will facilitate the process of converting from the Latin script to Ulu
Kaganga. Thus, they provide an opportunity for younger generations to learn and
understand the Ulu Kaganga script. Additionally, the accessibility of this tool
enables more people to engage with their culture and history, thus contributing to
the preservation efforts of cultural and linguistic heritage.

Due to its decreasing usage, the Ulu script is one of Indonesia’s cultural heritages
that needs to be preserved. Without efforts to introduce and preserve the Ulu
script among the public, it could face the risk of extinction, as it lacks speakers
from the younger generation. An approach to improve the use of the Ulu Kaganga
script is to obtain the help of technology for digitization [6]. Currently, information
technology is a tangible tool that facilitates various societal activities. Technological
utilization for preservation has already been applied to several scripts, such as the
transliteration of Bima script [7], Javanese script [8], [9], Balinese script [10], [11],
Sundanese script [12], as well as scripts from other nations such as Arabizi script
[13], Urdu script[14], Kurdish script [15]and Punjabi script [16].

Previous research has successfully transcribed the Komering script, or Ulu
Kaganga script, into Latin script using deep learning methods [6]. The character
recognition application for the Ulu Kaganga script employs a Convolutional
Neural Network (CNN) model with 96% accuracy for recognizing handwritten
text and 100% accuracy for images from input photos. However, this research has
not yet included the ability to translate Latin characters into Ulu script. Other
studies have developed applications for recognizing Ulu script, basemah, or
kaganga using simple script image mapping techniques [17], [18] - This image
mapping functions as a virtual keyboard for entering required characters. The

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ilman Zuhri Yadi, Yesi Novaria Kunang, at all | 3209

limitation of this image mapping lies in its constrained ability to transcribe
characters based solely on limited image mapping, restricting users to transcribing
characters based on available images. In contrast, the Ulu script is complex because
its writing system is syllable-based and differentiated by punctuation.
Consequently, the variety of characters corresponding to syllables amounts to
around 336 characters [6].

Hence, this research aims to develop an Android-based and web-based application
for transliterating Latin text into the Ulu Kaganga script using rule-based
techniques for syllable segmentation and character mapping. This technique
facilitates users in directly transcribing Latin sentences or paragraphs into the Ulu
script. Through the developed application, users can seamlessly transcribe Latin to
Ulu without the need to search for individual script characters.

Transliteration is the process of copying and substituting alphabet letters with
others without changing phonetic symbols [19]. Various previous studies have
employed different methods for script transliteration. For example, research has
used rule-based algorithms and the Levenshtein distance to transcribe Latin script
in the Balinese language into Balinese script [10]. The rule-based approach converts
Latin text into Balinese script, while the Levenshtein algorithm corrects grammar
based on a database. The results show a test accuracy of 99.09% for document
transcription.

Further improvement of special transliteration rules for affixing words in Balinese
script was performed in [20]. The rule-based model was also used to convert
Arabizi to Arabic script [13]. They identified a model from native speakers and
experts’ transliteration rules and utilized a discriminative model as a sequence
classification task. Similarly, a rule-based approach was used to transliterate the
Bima script [7], [21]. The developed transliteration application used a string
replacement method to convert Bima script characters into Latin letters, employing
171 rules [21].

The Rule-Based Method is also used for the syllabification process of the
Indonesian language [22]. Syllabification rules are applied to break down essential
Indonesian words into syllables. Similarly, syllabification is used to segment
syllables in the transliteration of Latin script into the Javanese language [23]. They
claim that using rule-based syllabification reduces the complexity of creating finite-
state diagrams. Syllabification algorithms are also used to spell words in the
Balinese language [24]. The syllabification process, or the spelling of syllables in
the Indonesian language, is crucial to convert sentences from Indonesian or Latin
script to the Ulu script based on syllables.

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

3210 | Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping

From the studies mentioned above, the rule-based technique has been successfully
implemented in many transliteration problems for languages with limited
resources, yielding satisfactory results. However, it is essential to consider the
complexity of rules for the diversity of the language itself. Because rule
interdependence can be reasonably complicated, rule designers must cross-check
whether the outcome of rule application is valid in all circumstances. This process
makes developing and maintaining rule systems extremely time-consuming [13].

Therefore, in this research, we will develop a rule-based approach for the
syllabification process of parsing text into syllable spellings in the Indonesian
language. We will also create rule-based methods to map characters according to
syllables. The generated rule-based approach will be implemented in an Android-
based application for transliterating Latin script to Ulu script, aiming to facilitate
user mobility.

2. METHODS

2.1. The Writing of the Ulu Script

The Ulu script of South Sumatra, also known as the Ka-ga-nga script, exhibits a
variety of shapes and variations depending on its regional distribution. Some refer
to this script as the Komering script, Ogan script, Rejang script, Pesemah script,
and so on [5].

Figure 1. Letters/syllabaries of the Ulu script and diacritical markings [25]

However, it generally consists of 28 characters, including 19 main characters (ka,
ga, nga, ta, da, na, pa, ba, ma, ca, ja, nya, a, sa, ra, la, wa, ya and ha) and 9 additional
characters (ngka, ngga, nta, nda, mpa, mba, nca, nja, rha). The writing system used

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ilman Zuhri Yadi, Yesi Novaria Kunang, at all | 3211

is syllabic, with symbols representing syllables. Additionally, the Ulu script has 11
diacritical marks that change vowels, add affixes, and modify consonants [25]. The
addition of diacritical marks will transform the base character into consonant
syllables. For example, the character "ka" will change to "ki," "ku," "ke," "ko,"
"kang," "kan," "kah," "k," "kaw," "kay," and "kar." When considering the number
of characters and diacritical marks, there are 1139 symbol characters for basic
syllables in the Ulu script. Figure 1 shows the forms and writing of the Ulu script,
along with the diacritical marks used as a reference.

2.2. Method of Transliterating Latin Script to Ulu Script

Rule-based mappings from Latin script to Ulu script involve establishing specific
correspondences for sounds, letters, and phonetic characteristics unique to
Indonesian. For instance, the Latin letter 'a' is mapped to the Ulu character,
because 'a' generally represents an open front vowel sound, which is similarly
represented in Ulu. The consonant 'k' corresponds voiceless velar plosive, Ulu
contains a direct equivalent conveying the same phonetic value. In cases of
diphthongs, the Latin 'ai' is represented in Ulu, capturing the blended vowel sound
that 'ai' denotes. Similarly, the Latin 'ng' is mapped to Ulu's, which corresponds to
a nasal consonant sound that exists in both scripts. For palatalization, the Latin 'c'
becomes 'k' in Ulu when followed by 'i' or 'e', as 'c' often represents a palatal sound
(like 'ch') in such contexts.

The rationale for these mappings primarily hinges on phonetic correspondence,
ensuring that each letter or combination of letters is matched with its closest
equivalent in Ulu script based on sound. Additionally, cultural considerations are
factored in, particularly regarding phonemes that may exist in bahasa but not in
another, emphasizing similarities rather than exact matches when needed. This
approach also aids in learning by providing intuitive mappings based on familiar
sounds and characters, facilitating a smoother transition for learners shifting
between the two scripts. The process flow of transliterating Latin script into Ulu
script using this rule-based technique consists of three stages: syllabification,
character mapping, and the sequential search process to find the corresponding
Ulu script character images (Figure 2).

Figure 2. Flow of the transliteration process from Latin script to Ulu

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

3212 | Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping

The explanation of each step is as follows.
1) The initial process begins with the user entering a sentence or paragraph

written in Latin script, the process as shown in Algorithm 1.

Algorithm 1. Syllabification algorithm
Input:word
Output: syllables
Call the syllabify function with the provided word.
Inside the syllabify function:
1. Call the replacer function with the given word to get a modified

version of the word.
2. Call the preprocess function with the modified word to obtain a list

of syllables.
3. Call the process function with the list of syllables to further

refine them.
4. Call the unreplace function with the processed syllables to revert

any replacements made.
5. Print the unreplaced processed syllables.
6. Return the unreplaced processed syllables.
7. End

2) The initial stage involves syllabification. The Latin text is entered into the

system and broken down into words. Each word undergoes syllable
segmentation. The syllabification process can be seen in Algorithm 1, which
modifies algorithm [23]. The result of this syllabification process transforms
the sentence into a sequence of syllabic spellings according to the rules of the
Indonesian language. An example of a sentence resulting from the
syllabification process will transform the sentence "aku cinta indonesia" into
"a-ku-cin-ta-in-do-ne-si-a." The results of the syllable segmentation are stored
in an array, the process as shown in Algorithm 2.

Algorithm 2. Character mapping algorithm
Input:text
Output: response
1. Create a new `Process` to run a Python script with the `$text` as an

argument.
2. Run the process.
3. Check if the process is not successful:

If not successful, throw an exception and print the error
output.
4. Get the process output and normalize it into the `$splitAksara`

member.
5. Normalize the `$splitAksara` by adding characters as needed.
6. Replace characters 'f', 'v', 'q', 'x', 'z' with their respective

updates.
7. Retrieve Aksara information from the database based on the

normalized characters.
8. Normalize the database result and prepare the response.
9. Set the `$response` member with the normalized result.
10. End.

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ilman Zuhri Yadi, Yesi Novaria Kunang, at all | 3213

3) After syllable segmentation, the second stage involves character mapping
based on the generated syllables. The algorithm for this stage can be seen in
Algorithm 2. After syllable segmentation is performed using the splitAksasra
function, it continues with the normalizationCharacter function. This function
searches for syllables in the normalization character table and stores the
character breakdown results from the syllables. Some Latin letters that do not
exist in the Ulu script are mapped or replaced with characters, namely ['f' =>
'p', 'v' => 'p', 'q' => 'k', 'x' => 'k', 'z' => 'j']. Then, the syllables and character
breakdowns are mapped to Ulu characters by the get_aksara function, which
searches for syllables in the aksara table, the process as shown in Algorithm 3.

Algorithm 3. Sequential searching for image character algorithm
Input: normalize_character
Output: this
1. Initialize an empty array called $result.
2. Call the `getAksara` method of a new instance of the `Aksara` class,

passing the result of `$normalize_character->toArray()` as an
argument. Store the result in the variable $result.

3. Map over each element in the $normalize_character collection using a
closure function that takes an $aksara as a parameter and uses the
$result obtained in step 2:

a. For each $aksara, return a filtered result from $result where
the 'keterangan' attribute matches the current $aksara.

b. Flatten the resulting nested array structure by one level
using `flatten(1)`.

4. Store the flattened result in the variable $resultAksara.
5. Map over each item in $resultAksara using a closure function:

a. Get the asset URL for 'data_aksara' and store it in
$assetUrl.

b. Check if the 'file' attribute of the current $item does not
start with $a setUrl using `Str::startsWith`.

c. If the 'file' attribute doesn't start with $assetUrl, update
the 'file' attribute by appending $assetUrl and a slash ('/')
to the beginning of the 'file' attribute.

d. Remove the 'created_at' and 'updated_at' fields from the
$item using `Arr::forget`.

e. Return the modified $item.
6. Set the property $this->response to the value of $resultAksara.
7. Return the current object instance ($this) to allow method chaining.
8. End.

4) The final stage involves finding images corresponding to the sequence of

syllables and character splits in the aksara table. This table contains 1139 Ulu
script character images, and the algorithm for this can be seen in Algorithm 3.
The search process uses sequential search techniques based on queries in the
table to find character names based on the 'keterangan' (description) field. It
then retrieves the image file name from the database on the 'file' field.
Subsequently, from the file name, the program displays the Ulu script image
stored in the 'data_aksara' folder.

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

3214 | Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping

5) The final step will present the results of the transliteration process in the form
of Ulu script characters.

2.3. System Development Architecture

The development architecture of the Latin script to Ulu script transliteration
application can be seen in Figure 2. A cloud server for the application is deployed
using Docker, which contains several tools. Laravel is used as the framework for
developing PHP-based service applications. The Laravel framework simplifies the
development of PHP applications that connect to a MySQL database and
applications developed in other programming languages, such as Python. Laravel
is also used to generate PHP Laravel REST APIs to connect with the Android
client application. The PHP REST API is used for applications that map syllables
to Ulu script symbols. Additionally, Python scripts are developed for syllabification
and sentence parsing.

Figure 3. Development architecture for transliteration system from Latin script

to Ulu script

MySQL is the database used to store syllable mappings with Ulu script file names.
Furthermore, the Nginx server serves as a Web server and functions as a reverse
proxy. Nginx handles requests to the web server and maps the service requests
based on ports. The developed application consists of two platforms: a web-based
application and an Android-based application. The Android-based client
application requests services through the Nginx reverse proxy server. Meanwhile,
administrative processes such as adding character maps, checking syllabification
processes, and adding Ulu script characters are accessed through the Web.

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ilman Zuhri Yadi, Yesi Novaria Kunang, at all | 3215

3. RESULTS AND DISCUSSION

3.1. Ulu Kaganga Transliteration Application Testing

The application has been developed on two platforms, web-based and Android-
based. The android based transliteration application for transliterating Latin script
to Ulu script has been tested on Android platforms version 9 and above. The
application itself can be downloaded from the following link:
https://bit.ly/nulisksaraUlu. This transliteration capability will be integrated into
the intelligent Ulu script recognition application, which previously could only
detect Ulu script [26]. This new feature for Ulu script transliteration will enable the
application to convert Latin characters to Ulu script. The web-based platform is
used for application testing and requires admin involvement to map syllabic
changes and add images of Ulu Kaganga character. To access the web-based
application, visit https://nulisaksaraulu.my.id/. Meanwhile, the Android-based
application is designed for user convenience and mobility.

Figure 4. The Ulu transliteration process in android-based application

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

3216 | Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping

The Android-based menu interface for transliterating Latin script to Ulu script
presents three main menus: Ulu script history, translation, and the characters in
the Ulu script. The Ulu scripts history menu contains historical information on the
Ulu script. Additionally, there is a Ulu script menu to help users understand the
primary syllabic characters of the Ulu script. This menu retrieves data from the
script table, displaying all forms of script present based on the file names within
the table. Administrative features are required to make changes to images or
symbols.

The translation menu in android-based application is used to translate Latin script
into Ulu script. Users simply enter a sentence or word to be transliterated, then
click the search button, and the translation results will be displayed, as shown in
Figure 4. The client application communicates with the REST API engine to
request services from TranslateService.php. When executed, the syllabification
process breaks the text into syllables, followed by character mapping, and finally,
the translation results are displayed. Not much different for the web-based Ulu
script transliteration application also utilizes a REST API client running in the
browser that communicates with the TranslateService REST API engine. The
interface of the client application itself can be seen in Figure 5.

Figure 5. The Ulu transliteration process in web-based application

3.2. Application Administration Features

The administration process primarily focuses on adding data for Ulu script symbol
characters and mapping syllables with symbol characters from the Ulu script. Users
can log in as an admin to access the addition or editing of Ulu script character
images. Additionally, there is a normalization menu for the syllable mapping
process to derive basic syllables from the Ulu script. This menu enhances syllable

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ilman Zuhri Yadi, Yesi Novaria Kunang, at all | 3217

mapping by adding pairs of 2 or 3 characters from Ulu script syllables, as shown
in Figure 6. This research has gradually mapped 1139 basic Ulu script syllables and
1631 mapping syllables.

The rule-based syllabification process will break down sentences or text into
syllables in the language. The evaluation process for syllable segmentation,
according to the rules of the Indonesian language, can be observed in Figure 7. As
depicted in the application, it effectively dissects syllables. This step is essential to
assess whether the application is accurately presenting transliteration results.

3.3. Transliteration Results Testing

To evaluate the transliteration results, tests were conducted by inputting test text.
The evaluation aimed to assess how accurately the developed application performs
transliteration. The testing was carried out progressively. In the first phase, a trial
was conducted by transliterating several sentences obtained from the internet and
pasted into the application. The tested data consisted of text and sentences. During
the initial testing, there were 95-character mappings available in the normalization
table. In this first round of testing, 20 trials were conducted, inputting a total of
775 words. There were 7 failed attempts to transliterate, resulting in 15 syllables
that could not be successfully converted into Ulu script characters. These 15 split
syllables with mappings not present in the normalization table were added to the
database and retested. After this, all 775 words were successfully transliterated
accurately.

Figure 6. Mapping of Ulu Script character pairs

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

3218 | Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping

Figure 7. Split Script menu to verify the syllable segmentation process before

mapping into characters

Then, additional character mappings were added for the normalization of syllables
by completing the list of Indonesian syllables with a total of 2148 syllables, as
referenced in the source [23]. Some of these syllables were already included in the
basic syllables of the Ulu script, so the addition of normalized syllables resulted in
1631-character mappings. Afterwards, more comprehensive testing was carried out
by inputting texts with varying sentence lengths for transliteration. In the second
phase of testing, sentences were derived from the 1945 Constitution. Thirty trials
were conducted by inputting sentences from excerpts of the preamble and the
articles of the 1945 Constitution. The testing results are presented in Table 1.
Testing from 1 to 25 utilized the main body from the preamble to its articles.
Additionally, in tests 26 to 30, several revised articles from the fourth amendment
of the 1945 Constitution were used as the input text.

Figure 8. Test 2 resulted in one syllable not being detected

The results of the transliteration tests show that out of 30 tests, with a total of 1746
input words, the application was able to transliterate all words effectively. Only
one syllable was not detected out of a total of 4839 syllables resulting from the
syllabification process. The application successfully segmented sentences into
syllables and transliterated them into Ulu script characters with an accuracy of

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ilman Zuhri Yadi, Yesi Novaria Kunang, at all | 3219

99.98%. This accuracy value is calculated based on the total number of syllables
that could be transliterated compared to the overall total number of syllables
resulting from the syllabification process. The result indicates that the application
can perform as intended for web-based and android-based applications. During its
development, the application received guidance from experts in Ulu script
philology from the Ulu script enthusiast’s community. Experts in Ulu script
philology also conducted tests and evaluations to avoid script writing errors.

Table 1. The results of transliteration testing
Testing
Number

Total
Words

Total
Syllables

Total Ulu
Script

Undetected
syllables Accuracy

1 75 198 210 0 100%
2 121 368 399 1 99.73%
3 29 74 82 0 100%
4 69 198 230 0 100%
5 92 254 276 0 100%
6 133 376 426 0 100%
7 80 216 233 0 100%
8 30 77 82 0 100%
9 26 78 77 0 100%
10 39 116 125 0 100%
11 59 161 174 0 100%
12 81 215 237 0 100%
13 84 236 252 0 100%
14 43 118 123 0 100%
15 35 91 96 0 100%
16 53 141 152 0 100%
17 31 81 89 0 100%
18 26 66 75 0 100%
19 32 96 101 0 100%
20 63 164 175 0 100%
21 21 56 53 0 100%
22 39 106 112 0 100%
23 38 109 112 0 100%
24 43 126 142 0 100%
25 41 109 128 0 100%
26 97 281 300 0 100%
27 35 104 107 0 100%
28 60 154 174 0 100%
29 104 300 518 0 100%
30 67 170 194 0 100%
Total 1746 4839 5454 1 99.98%

The results of Test 2 for the syllabification process indicated that there was one
syllable that was not detected (as shown in Figure 8).

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

3220 | Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping

In Test 2, the syllable "rakh" was unable to be transliterated. From the
syllabification process illustrated in Figure 9, it can be observed that the
syllabification algorithm was functioning effectively. Therefore, the error was due
to the application not finding the appropriate character mapping for that syllable.
In Figure 10, an additional syllable mapping is presented in the "normalization"
table, where the syllable "rakh" is mapped as "ra-k-h."

Figure 9. The results of syllabification of the sentence from Test 2

Figure 10. The addition of the syllable "rakh."

Figure 11. Improvements in the transliteration results from Test 2

After the addition, the results of the transliteration show the correct outcomes as
desired (Figure 11). From this testing, one of the weaknesses of this application is
the necessity for continuous testing to identify deficiencies in character mapping,

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ilman Zuhri Yadi, Yesi Novaria Kunang, at all | 3221

particularly for syllable normalization. Currently, a total of 1,641 syllable mappings
have been incorporated, in addition to 1,139 syllables derived from Ulu script
characters.

User feedback and expert evaluations play a crucial role in the refinement of
transliteration tools, leading to improvements in accuracy, usability, and overall
effectiveness. Users often identify errors that developers may overlook, and
feedback regarding incorrect transliterations can help pinpoint specific patterns or
exceptions that need adjustment. Additionally, user feedback highlights usability
challenges, such as complicated interfaces or unclear instructions, while expert
evaluations identify best practices in user experience design. Moreover, contextual
adaptation is vital, Ulu script have unique rules for transliteration. User insights
often reveal gaps in addressing cultural or linguistic nuances, allowing for more
contextually appropriate outcomes. Suggested features from experts can enhance
the tool’s functionality, including options for customizable transliteration settings,
and visual aids to assist users in understanding the mapping process. Engaging with
users and experts fosters a sense of community around the tool, encouraging
ongoing conversations about best practices in transliteration and prompting users
to share their experiences and suggestions for improvement.

However, there are some shortcomings and limitations behind the benefits and
advantages of the Latin to Ulu script application. One weakness of this application
is the lack of support for numbers and punctuation marks. When parsing text,
punctuation marks and numbers are removed first. This limitation is due to the
constraints of writing in the Ulu script, which does not include numbers and
punctuation marks. Using numbers in various Ulu script variants does not yet have
symbols for writing numbers. From the testing conducted using articles containing
Roman numerals, they will be transliterated as characters without meaning. This
can be understood because the simplicity of writing rules in ancient times is not as
complex as the rules of writing in the Latin script. The Ulu script, derived from
the Ka-ga-nga script, has many variants that this Latin may not yet represent to
Ulu script transliteration application. Therefore, it would be interesting to develop
Ulu script transliteration with various Ulu script or Kaganga script variations used
in the South Sumatra region in the future.

3.4. Discussion

The results demonstrate that the developed Ulu Kaganga transliteration
application, available on both web-based and Android platforms, functions
effectively in converting Latin script to Ulu script. The transliteration accuracy of
99.98% highlights the robustness of the implemented rule-based syllabification and
character mapping process. The successful segmentation and transliteration of
4839 syllables out of 4840 input syllables confirm the system's reliability. However,

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

3222 | Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping

the detection failure of the syllable "rakh" in Test 2 underscores the importance of
continuously expanding the normalization table to accommodate additional
syllabic mappings. The subsequent correction and successful transliteration after
updating the mapping table demonstrate the adaptability of the system to
incremental refinements.

The transliteration process relies on a REST API-based architecture, ensuring
seamless communication between the client application and the TranslateService
engine. Both the Android and web-based versions follow a similar approach,
utilizing syllabification, character mapping, and subsequent transliteration. The
administrative features further enhance the system by allowing the addition and
modification of Ulu script characters, ensuring the application remains adaptable
to new linguistic insights. Currently, the system includes 1,139 basic Ulu script
syllables and 1,641 mapped syllables, demonstrating significant progress in building
a comprehensive transliteration framework.

User feedback and expert evaluations are crucial in refining the application,
addressing both transliteration accuracy and usability. Users can identify errors that
may not be immediately apparent to developers, while expert evaluations provide
deeper linguistic insights to improve the transliteration rules. This iterative
feedback process has proven effective in enhancing accuracy and contextual
adaptation, particularly given the unique transliteration rules of the Ulu script.
Furthermore, expert recommendations can contribute to future improvements,
such as customizable transliteration settings and visual aids to support users in
understanding the mapping process.

Despite its advantages, the application has limitations. One notable drawback is
the lack of support for numbers and punctuation marks. Currently, numbers and
punctuation are removed before transliteration due to the historical constraints of
the Ulu script, which does not inherently include symbols for these elements.
Consequently, when transliterating text containing Roman numerals, the output
may result in characters without meaning. This limitation reflects the simplicity of
ancient writing conventions compared to modern Latin script rules. Additionally,
the Ulu script comprises multiple regional variants, which are not yet fully
incorporated into the current application. Future developments should explore
transliteration models that accommodate variations of the Ulu script or Kaganga
script used in the South Sumatra region. Expanding the system to support these
variations would enhance its applicability and cultural relevance. Overall, the Ulu
Kaganga transliteration application represents a significant step toward preserving
and digitizing the Ulu script. However, continued development, guided by user
feedback and expert insights, will be essential for further improving transliteration
accuracy, expanding character mappings, and incorporating additional script
variants.

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ilman Zuhri Yadi, Yesi Novaria Kunang, at all | 3223

4. CONCLUSION

In this research, we propose an application to transliterate Latin text into Ulu
Kaganga script using a rule-based technique and character mapping. The proposed
rule-based approach breaks down words into syllables and maps syllables to Ulu
script characters. The results demonstrate that the application can easily
transliterate entered text or sentences with this technique. Some challenges caused
by certain syllables that cannot be displayed can be addressed by adding character
mapping rules to the table. Thus, the more rules for mapping new syllables that are
added, the application's ability to transliterate will improve. Furthermore, using
character mapping rules simplifies the application workflow, as it only needs to
search for character mappings sequentially in the table, making the mapping
process more straightforward.

Potential future work may include adding more character mappings to enhance the
transliteration accuracy for a wider range of words and syllables. Additionally,
supporting numbers and punctuation would provide a more comprehensive
transliteration system, while exploring different variants of the Ulu Kaganga script
would ensure compatibility and representation of diverse linguistic features.
Additionally, we will gradually enhance the transliteration application for the Ulu
Kaganga script with various Ulu script variants, such as Ulu Lubuk Linggau, Ulu
Pasemah, Ulu Semendo, Ulu Ogan, and others, to preserve the ancient writing
culture of the South Sumatra region.

For the utilization of the developed tool, potential collaborations with cultural
heritage organizations and educational institutions offer opportunities for broader
dissemination of the transliteration tool. Partnering with cultural heritage
organizations can promote the tool as a resource for preserving and documenting
linguistic diversity, facilitating its integration into various cultural initiatives and
projects. Additionally, collaboration with educational institutions can lead to the
inclusion of the tool in local content curricula, workshops, and training sessions,
thus reaching a wider audience of students and educators. These partnerships not
only enhance the tool's visibility but also contribute to its practical application in
real-world contexts, fostering greater engagement and understanding of the Ulu
script and the cultures it represents

REFERENCES

[1] E. Rochmiatun, “Naskah Gelumpai di Uluan Palembang: antara Ajaran

Islam dan Ajaran Hindu-Buddha,” Manuskripta, vol. 9, no. 1, pp. 45–67,
2019.

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

3224 | Rule-Based Transliteration of Ulu Kaganga Script using Character Mapping

[2] M. A. Ridhollah, N. U. Kalsum, and S. Khudin, “Naskah Ulu: Obat-Obatan
Tradisional Dalam Naskah Kaghas Nomor. Inv 07. 47 Koleksi Museum
Negeri Sumatra Selatan (Kajian Filologi),” no. 3, 2021.

[3] W. R. Andhifani and N. Rahmadhona, “Naskah Ulu Puyang Bang Mangu’:
Sebuah Batas Wilayah,” J. Penelit. Arkeol. Papua Dan Papua Barat, vol. 13, no.
1, pp. 71–86, Jun. 2021, doi: 10.24832/papua.v13i1.298.

[4] Y. Asmara, “Lubuklinggau’s Ulu Alphabet and Its Preservation,” Istor. J.
Pendidik. Dan Ilmu Sej., vol. 15, no. 1, Mar. 2019, doi:
10.21831/istoria.v15i1.24156.

[5] N. Anida, N. U. Kalsum, and O. Otoman, “Suntingan dan Analisis Isi Teks
Aksara Ulu dalam Koleksi Peti 91/E6,” Tanjak Sej. Dan Perad. Islam, vol. 1,
no. 2, pp. 42–53, 2021, doi: 10.19109/tanjak.v1i2.9374.

[6] Y. N. Kunang, I. Z. Yadi, Mahmud, and M. Husin, “A New Deep Learning-
Based Mobile Application for Komering Character Recognition,” in 2022
5th International Seminar on Research of Information Technology and Intelligent Systems
(ISRITI), Yogyakarta, Indonesia: IEEE, Dec. 2022, pp. 294–299. doi:
10.1109/ISRITI56927.2022.10053072.

[7] A. Aranta et al., “Learning media for the transliteration of Latin letters into
Bima script based on android applications,” J. Educ. Learn. EduLearn, vol.
15, no. 2, pp. 275–282, May 2021, doi: 10.11591/edulearn.v15i2.19013.

[8] V. Atina, S. Palgunadi, and W. Widiarto, “Program Transliterasi Antara
Aksara Latin dan Aksara Jawa dengan Metode FSA,” J. Teknol. Inf. ITSmart,
vol. 1, no. 2, p. 60, Mar. 2016, doi: 10.20961/its.v1i2.592.

[9] B. E. Praheto and F. B. B. Utomo, “Transliteration Method In Learning
Reading Of The Javanese Script,” in International Conference on Education 2019,
PGSD Universitas Sarjanawiyata Tamansiswa, 2019, pp. 32–36.

[10] M. Sudarma, I. N. S. Kumara, and I. Udayana, “Transliteration Balinese
Latin Text Becomes Aksara Bali Using Rule Base And Levenshtein Distance
Approach,” Indones. J. Electr. Eng. Comput. Sci., vol. 2, no. 3, pp. 401–408,
2016.

[11] G. Indrawan, I. G. Aris Gunadi, M. Santo Gitakarma, and I. K. Paramarta,
“Latin to Balinese Script Transliteration: Lessons Learned from the
Computer-based Implementation,” in 2021 The 4th International Conference on
Software Engineering and Information Management, Yokohama Japan: ACM, Jan.
2021, pp. 171–175. doi: 10.1145/3451471.3451499.

[12] Y. A. Gerhana, M. F. Padilah, and A. R. Atmadja, “Comparison of Template
Matching Algorithm and Feature Extraction Algorithm in Sundanese Script
Transliteration Application using Optical Character Recognition,” J. Online
Inform., vol. 5, no. 1.

[13] A. Masmoudi, M. E. Khmekhem, M. Khrouf, and L. H. Belguith,
“Transliteration of Arabizi into Arabic Script for Tunisian Dialect,” ACM
Trans. Asian Low-Resour. Lang. Inf. Process., vol. 19, no. 2, pp. 1–21, Mar. 2020,
doi: 10.1145/3364319.

Journal of Information Systems and Informatics
Vol. 6, No. 4, December 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Ilman Zuhri Yadi, Yesi Novaria Kunang, at all | 3225

[14] H. M. Shakeel, R. Khan, and M. Waheed, “Context based Roman-Urdu to
Urdu Script Transliteration System,” ArXiv Prepr. ArXiv210914197, 2021.

[15] S. Ahmadi, “A rule-based Kurdish text transliteration system,” ACM Trans.
Asian Low-Resour. Lang. Inf. Process. TALLIP, vol. 18, no. 2, pp. 1–8, 2019.

[16] K. D. Goyal, M. R. Abbas, V. Goyal, and Y. Saleem, “Forward-backward
Transliteration of Punjabi Gurmukhi Script Using N-gram Language
Model,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 22, no. 2, pp.
1–24, Mar. 2023, doi: 10.1145/3542924.

[17] A. Sonita and A. Susanto, “Implementasi Augmented Reality (AR) Sebagai
Media Pengenalan Aksara Ka Ga Nga Rejang Lebong Berbasis Android,” J.
Komput. Inf. Dan Teknol. JKOMITEK, vol. 2, no. 2, Dec. 2022, doi:
10.53697/jkomitek.v2i2.867.

[18] D. Setiawati, “Media Pembelajaran Pengenalan Aksara Besemah Pada Anak
Sd Di Kota Pagaralam Berbasis Android (Studi Kasus: Sd N 55),” PhD
Thesis, Universitas Komputer Indonesia, 2019.

[19] J. K. L. Dimpudus, A. M. Sambul, and A. S. M. Lumenta, “Transliteration
Block Notation Application Into Number Notation Using The MusicXML
Format”.

[20] G. Indrawan and others, “A Method for the Affixed Word Transliteration
to the Balinese Script on the Learning Web Application,” Turk. J. Comput.
Math. Educ. TURCOMAT, vol. 12, no. 6, pp. 2849–2857, 2021.

[21] A. Aranta, F. Bimantoro, and I. P. T. Putrawan, “Penerapan Algoritma Rule
Base dengan Pendekatan Hexadesimal pada Transliterasi Aksara Bima
Menjadi Huruf Latin,” J. Teknol. Inf. Komput. Dan Apl. JTIKA, vol. 2, no. 1,
pp. 130–141, Mar. 2020, doi: 10.29303/jtika.v2i1.96.

[22] A. Rahman, D. T. Murdiansyah, and K. M. Lhaksmana, “Silabifikasi
Menggunakan Metode Rule-based Dalam Bahasa Indonesia,” EProceedings
Eng., vol. 8, no. 5, 2021.

[23] A. W. Mahastama, “Model Berbasis Aturan untuk Transliterasi Bahasa Jawa
dengan Aksara Latin ke Aksara Jawa,” J. Buana Inform., vol. 13, no. 02, pp.
146–154, Oct. 2022, doi: 10.24002/jbi.v13i02.6526.

[24] G. B. P. Putra and N. A. Sanjaya Er, “Syllabification of Balinese Words
Using the Syllabification Algorithm,” JELIKU J. Elektron. Ilmu Komput.
Udayana, vol. 8, no. 2, p. 125, Jan. 2020, doi:
10.24843/JLK.2019.v08.i02.p03.

[25] N. Ramadhona, Buku Pedoman Aksara Ulu Sumatera Selatan. KBM indonesia,
2022.

[26] Y. N. Kunang, I. Z. Yadi, M. Mahmud, and M. Husin, “Aplikasi Perangkat
Lunak Pendeteksi Aksara Komering/Aksara Ulu Berbasis Android,”
EC00202273702, Oct. 2022

